Inicio Ciencia Por primera vez, un “Sol artificial” alcanzó una temperatura mayor que la...

Por primera vez, un “Sol artificial” alcanzó una temperatura mayor que la del Sol real

El mundo científico celebra lo que a primera vista parece ser un paso clave hacia un futuro con fusión nuclear comercial.

Un reactor logró generar en su interior más de 100 millones de grados Celsius y mantenerlos estables durante 20 segundos, un récord para este tipo de experimentos.

Los físicos del Centro de Investigación KSTAR de Corea del Sur lograron mantener estable por 20 segundos un sol artificial, a más de 100 millones de grados Celsius de temperatura, dentro de un dispositivo de fusión nuclear.

El récord histórico puede parecer poco, pero el Joint European Torusun reactor de fusión situado en el Reino Unido, logró 10 segundos en las mismas condiciones y el propio KSTAR no superó los ocho segundos en 2019, recordó Engadget.

De acuerdo con INFOBAE, parte del Instituto Coreano de Energía y Fusión (KFE), el sol artificial es “una planta nuclear con esteroides”, comparó Syfy las instalaciones de la ciudad de Daejeon.

La sigla significa Investigación Avanzada de Tokamak Superconductor de Corea del Sur, y Tokamak es, a su vez, un acrónimo de palabras en ruso que describe una cámara toroidal con bobinas magnéticas: un aparato experimental creado en la década de 1950 en la Unión Soviética que consiste en una cámara de vacío circular donde, mediante calor y presión, se fusionan los núcleos de hidrógeno para formar helio y producir energía.

“En lugar de utilizar combustibles fósiles o la fisión nuclear (la división del núcleo del átomo) para generar energía, utiliza la fusión nuclear (la unión de núcleos de átomos)”, detalló Syfy. “La fusión nuclear es posible cuando los núcleos de dos elementos con una baja cantidad de protones se unen para formar el núcleo de un elemento más pesado, que puede liberar más energía”, amplió.

La fusión nuclear es lo que sucede en el interior de las estrellas como el Sol.

Pero en un laboratorio surgen problemas prácticos que hasta el momento no se han resuelto: cómo conservar la energía que se genera en la cámara donde el gas se transforma en plasma, que es el cuarto estado de la materia; cómo equilibrar la temperatura del plasma, que es desigual.

“KSTAR mejoró el desempeño del modo de barrera de transporte interno (ITB), uno de los modos de nueva generación para la operación de plasma, que se desarrollaron el año pasado, y logró mantener el estado de plasma por un largo periodo, superando los límites que existían a la operación de plasma de temperatura ultraalta”, dijeron en un comunicado las autoridades de KFE.

PROYECTO.

La investigación es un proyecto conjunto de la Universidad Nacional de Seúl (SNU) y la Universidad de Columbia de Estados Unidos, y se espera que en el futuro cercano KSTAR se integre al Reactor Termonuclear Experimental Internacional (ITER), un programa en el que participan Estados Unidos, la Unión Europea, Rusia, China, Japón y la India, que busca crear el tokamak más grande que haya existido y lograr hacerlo funcionar entre 2030 y 2035.

“Actualmente Corea del Sur también construye las enormes herramientas para ensamblar las partes del ITER, y también estará a cargo de producir los escudos térmicos para los gigantescos imanes del reactor”, siguió Syfy. Pero la clave parece haber sido la mejora del modo ITB: “Las barreras de transporte interno son áreas del plasma en el centro de un reactor donde es posible detener o al menos reducir la turbulencia. Poner un tokamak en modo ITB contiene al plasma y mejora la estabilidad”. Eso “ayudó a prolongar la cantidad de tiempo que el plasma se mantiene caliente” y se espera que en cinco años logre llegar “a por lo menos 300 segundos”.

En cualquier caso, el logro histórico de KSTAR se mantiene: ha alcanzado la temperatura más alta del sistema solar.